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APPLICATION OF RIDE QUALITY TECHNOLOGY TO PREDICT

RIDE SATISFACTION FOR COMMUTER-TYPE AIRCRAFT

Ira D. Jacobson, A. R. Kuhlthau, L. G. Richards

University of Virginia

SUMMARY

A method has been developed to predict passenger satisfaction with the

ride environment of a transportation vehicle. This method, a general approach,

has been applied to a commuter-type aircraft for illustrative purposes. Here

the effect of terrain, altitude and seat location were examined. The method

predicts the variation in passengers satisfied for any set of flight condi-

tions. In addition several non-commuter aircraft were analyzed for comparison

and other uses of the model described. The method proposed has advantages for

design, evaluation, and operating decisions.

I

INTRODUCTION

The purpose of this paper is to provide a method of assessing passenger

satisfaction with the ride quality on transportation vehicles. The method

is applicable to both existing systems as well as future ones, and can be used

for evaluation, design and decision making. Basically it relates the

environment in which the vehicle must be used and the performance character-

istics of the vehicle to determine the probability of satisfying the

passenger.

This analysis is based on previous work by the authors in assessing

vehicle ride quality for the air mode. In refs. 1 and 2, a model of passenger

comfort and satisfaction with a ride as a function of the motion of the

vehicle was developed. This model coupled with standard techniques for

analyzing a vehicle's motion allow us to examine such variables as: vehicle

type, input forcing functions, operating characteristics, etc.

The method will be applied to commuter-type aircraft and variations in

passenger satisfaction due to terrain, altitude, equipment and location

in the vehicle described. Other uses of the technique are also suggested.
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length scale for turbulence spectrum
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standard deviation for accelerations, rms for turbulence quantities

power spectral density

frequency
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longitudinal direction

transverse direction
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METHOD

Description

The method of analysis is shown in figure I. A vehicle forcing function is

converted into motion cues to the passenger using the appropriate transfer
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functions for the system being analyzed. Typical forcing functions are illus-

trated in table I along with the important properties of the transfer functions
for several vehicles.

Vehicle

Airplane

Table I

Primary Forcing Function

Atmospheric Turbulence

Train Rail Profile

Bus, Automobile Road Surface

Ship Sea Surface

Characteristics of

Transfer Function

Aerodynamics, Mass

Properties

Suspension System,

Wheel Configuration,

Mass Properties

Suspension System,

Wheel Configuration,

Mass Properties

Hydrodynamics, Mass

Properties

In most cases the vehicle engines also contribute to the motion experiences (e.g.

vibrations) however their amplitudes and frequencies compared with the primary

forcing function shown above are usually negligible.

Vehicle functions generally depend on frequency; thus,-bbth _litude and _f

frequency information of the input; or, the input power spectrum is necessary .

for the analysis. In addition the inputs can and usually are statisti_li_ z "

varying quantities so that a probability density function for each of the in-

puts is necessary. In fact, as will be seen below, the method_a_s_ibed allow_

for isolating components of the forcing function which contribute m0st to
passenger dissatisfaction. In some cases this information may be used to

find ways to improve the ride environment (e.g. treatment of roadways or active

ride smoothing on the vehicle). _vJ_ _"__-

Vehicle motion can take the form of velocities, accelerations and rates of

change of acceleration in each of six-degrees-of-freedom. Not all of them are

appropriate for the ensuing analysis and only those needed in the subjective

transfer function must be determined. In general the passenger's comfort will

be functionally related to the motion parameters of angular velocity and linear

acceleration and their derivatives

C = f(a ,a ,a ,m ,__,_z,Ax,A ,_ ,_ ,_ ,_ )x y z -x -_ - y z -x -y -z
(i)
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where C is the subjective comfort rating, ax,ay,a z linear accelerations in the

longitudinal, lateral and vertical directions respectively, and _mx,__y,__zangu-

lar velocities about the longitudinal, lateral and vertical axes respectively.

The • denotes a time derivative, thus A is the longitudinal Jerk, etc. The
x

comfort model can be a simple function of rms motion variables through a more

complex frequency-dependent psychophysical model (see e.g. ref. 2). In the

"real world" other factors also contribute to the passenger's comfort (e.g.

noise, temperature, etc. ) however these will be neglected here. A more complete

analysis should include them.

The mathematical procedure for arriving at the comfort rating is straight-

forward but somewhat tedious to perform. The Joint probability density function

for the motion variables, f(ax,ay,az, "'') is integrated over motion space to

arrive at a probability function for the passenger _ comfort level. That is,

the probability that the comfort rating is less than or equal to some value C'

is given by

C'-_ C'-_
ax

P(C <_ C') = 6f=o-Zf''" a =Of f(ax,ay,az, "''' 6-z)daxdaydaz "'" d6_z (2)

--Z X

where _. is the value of the associated motion variable given by the comfort
l

equation, each one being eliminated as the integration progresses. Since the

motion can varywith location in the vehicle, the above analysis must be re-

peated at each station of interest.

The last step in the analysis relates the derived comfort rating to a value

Judgement. This value Judgement is taken to be passenger satisfaction with the

ride which is related to comfort rating. The percentage of passengers satis-

fied, S, is a simple function

s = f(c). (B)

Thus for any comfort rating the value Judgement transfer function transforms C

to S by the above equation. The actual decision process is much more complex,

being dependent on other variables as well as competing modes. These have been

neglected in this analysis, assuming that if a passenger were dissatisfied a

sufficient number of times he would seek an alternate means of reaching his

destination.

The remainder of this paper will apply this method to a particular vehicle

type--commuter aircraft--however it is important to note that the method is by no

means restricted to this mode. At the present time this is the only mode for
which data were available.
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Application to Commuter-TypeAircraft

Input Forcing Function

For aircraft the input forcing function is atmospheric turbulence, which
can be characterized by velocity power spectra in all six-degrees-of-freedom,
longitudinal, lateral, vertical, pitch, roll, and yaw. However, since previous
work (refs. 1 and 2) has shown that the comfort models require only vertical

and lateral linear accelerations, only these components of the turbulence field

will be considered. The amplitude probability as well as the frequency content

are functions of terrain, altitude, and weather. Typical examples are shown in

figure 2, where the variation in vertical, Ow ' and lateral, Ov ' rms gust in-
g g

tensity is seen versus altitude for mountain terrain (refs. 3 and 4). Similar

curves are available for water and flat terrain. The power spectra for these

are given by a Dryden model

1 + 2
2 L e

nV° [I + (_)212

C4)

where V0 is the aircraft velocity, _, the frequency, o the rms gust intensity

and L, the length scale which is a function of altitude (ref. 4). A typical

power spectrum is shown in figure 3.

Vehicle Transfer Function

Aircraft transfer functions are a function of aerodynamics and mass proper-

ties and can be found in many references (see e.g. ref. 5). Here we assume a

rigid body model (no structural bending) and neglect gyroscopic effects. The

particular vehicle first considered is the deHavilland Twin Otter aircraft,
which was selected because of the abundance of data available concerning its

aerodynamic characteristics. It is regrettable that functions for the air-

craft suitable for potential use in the commuter market are not readily avail-

able.

Motion Spectra of Vehicle

The outputs of interest for the comfort model to be used below are the rms

accelerations in the vertical and lateral directions. These can be obtained

by integrating their power spectral densities over frequency space which are

given by

Sa = az
z

¢a =
Y

(5a)
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where Sa (_) 'Ca (m) are the power spectral densities for vertical and lateral

accelerations, and az and are the transfer functions for these accelera-

tions relating them to the turbulence field. For the Twin Otter, the rms ac-
celeration cumulative probability distribution is shownin figure 4 for a typi-
cal case. Typical spectra for these accelerations are given in figure 5.* As
can be seen in figure 6 the acceleration in the vertical direction closely
approximates a normal (Gaussian) distribution. The samebehavior can be seen
for actual flight data in reference 6. Transverse acceleration behaves similar-
ly. This allows us to write the probability density functions for each separ-
ately and for both combined using a normal distribution. From flight data
(refs. 2 and 6) the cross correlation between vertical and lateral accelerations
is 0.8 thus the Joint probability distribution function is given by

I a 2 2p( - a)
- • exp - -- _ y z

f(%'az) Yaz 2(1- 2) z

/az-_a

where _a '_a are the mean rms accelerations, _ '_a are the standard devia-
y z ay z

tions of rms accelerations, and O is the correlation coefficient b_tween acceler-

ations. The values for the _'s and O's for different terrain, al$itude and

vehicle location can be found by compu%ing values of the motio_ vagiables for

= ..5"an_ .84 respectively.

Subjective Transfer Function

A subjective comfort model has been developed (ref. 2) based on extensive

field data taken on commercial airlines (refs. 6, 7, 8) and in-flight simulator

(ref. 9) experiments. This model relates the subjective comfort response to

rms vertical and transverse accelerations in g's as

: C = 2 +ll.9a z + 7.6a when a >'l.6a , (7a)

and

C = 2 + az + 25_ when az < 1.6ay, (_)

*The contribution to the rms acceleration for the vertical direction can be di-

vided into two frequency regimes-belowand above 1 rad/sec. The region above

1 rad/sec contributes 88 percent of the total power and is thus more important
in determining comfort.
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where C is restricted to values 2 through 5, with the following descriptors:

C = 2 comfortable

= 3 neutral
= 4 uncomfortable

= 5 very uncomfortable.

For motions in which vertical acceleration dominates (i.e. a > 1.6a)
Z -- y

%

subjective Judgments lean more heavily toward the vertical stimulus, however

transverse acceleration is more important otherwise. For pure motion in either

direction these models predict twice the sensitivity to the transverse direc-

tion compared with the vertical direction•

Comfort Determination

Using equations 7 we compute the comfort rating corresponding to any given

vertical and transverse accelerations• However the accelerations are described

by the Joint probability distribution function (given in equation 6). Thus the

probability of exceeding a given comfort level C' is obtained from equation 6

using equations 7 to describe the integration space as

a (C'-2-7• 6a)/ll• 9

p(c > C') = fe { Y f(ay,az)da da
- 0 I. a y z

Y (8)
a (c'-2-a)/25

÷
0 az/ •6

For the Twin Otter aircraft the first, _, and second, o, moments describing the

probability distribution f are given in table II for the center of gravity o_

the aircraft. Similar data have been generated for other positions' within _th_

craft. _ :

Table II • L.

Altitude

_a (g's)
z

_a (g's)
Y

a (g's)
a

z

a (g's)
a

Y

Terrain

Mountain

152 m

.055

.015

.o24

.0066

3,048 m

.035

•O094

.015

.0o41

152 m

.019

.0051

•0052

.o014

Water

3,048 m

.012

.0032

.0033

.ooo88

152 m

.048

.013

.o19

.0051

Flat

3,048 m

•031

•0082

•012

•0032
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Equation 8 is numerically integrated to determine the cumulative probability

distribution for each case of interest (i.e. terrain, altitude, seat location).

A typical result is shown in figure 7 which illustrates the variation due to

terrain for a fixed altitude and location within the aircraft. Thus for this

case there is a 90% probability that the subjective comfort rating will be less

than 2.3 for flight over water, less than 2.75 for flight over flat terrain,

and less than 2.9 for flight over mountain terrain. Stated alternatively the

probability that the comfort rating of the ride will be less than or equal to

2.5 is 100%, 54%, and 42% for flight over water, flat and mountainous terrain

respectively. Similar comparisons can be made for any set of conditions or to

compare different aircraft for a single set of conditions.

Value Transfer Function

The calculated comfort Judgments must now be related to a more value-

oriented variable. We choose as this quantity the percentage of passengers

satisfied with the ride, that is, the fraction of passengers who would willingly

take another flight at least without hesitation. This quantity has been deter-

mined in previous work (ref. l) to be related to the subjective comfort rating

as shown in figure 8. As can be seen, from a statistical point of view, there

are approximately 7% of the passengers who will not be satisfied with the ride

environment even when the ride is rated comfortable by most of the passengers.

This is seen more clearly when examining distributions of passenger responses
(see e.g. ref. 2).

This transfer function, figure 8, has been applied to data on subjective com-

fort responses, to obtain the probability of satisfying a given percentage of

the passengers. Typical graphs are given in figures 9 and l0 for the aircraft

center of gravitY and an extreme aft seat location as a• function of terrain and

altitud.e_ As an ex,ampl_ of. usingl _t_hese 'graphs", they .!ndicate th_ '_.at!th@ _cen,ter

of gravi@ there is. a, 45_ probability _of satisfying atr'ieaS£ _'5%!io'f__h_e"_P_-se_ir

gers flying •at 152 m over mountain terraln,: •while •there is an 85% probability

of satisfying the same number of passengers flying at 3,048 m over mountain

terrain. Similarly over the same terrain at 152 and 3,048 m respectively

there is a 36% and 78% probability of satisfying 85% or more of the passengers

at an aft seat location. This illustrates that a) the aft seat locations are

less comfortable than those near the center of gravity, and b) flying at higher

tudes increases the pro_a_i_ii_y-of satl_fylng _assengers. 'fnus %1%e more

conservative approach would be to design to the low altitude, aft seat loca-
tion results.

Comparison to Other Aircraft

Several other aircraft have been analyzed using the method described.

Transfer functions were obtained from references l0 and ll. The aircraft are

the Breguet 941, Douglas DC-8, Cessna 182, and an externally blown flap (EBF)

aircraft still in the design stage. These aircraft have the following char-
acteristics:
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Aircraft Weight (k_) Approximate No. of Passengers

DC-8 91,000 200

Cessna 182 1,360 4

Breguet 941 20,000 45

EBF 122,000 270

Figure ii illustrates the variation in percent satisfied by aircraft type

for cruise at 3,048 m altitude over mountain terrain. As is seen the DC-8

is the best aircraft and the EBF the worst.

Applications of the Method

The method described can be used to assess the satisfaction of passengers

with the ride environment of a given vehicle. In addition it can be used to

perform sensitivity analyses of the effects of vehicle variables, through varia-

tions in the vehicle transfer function and of input variables through the forcing

function. These can be used to determine maximum design payoffs in the case of

the vehicle or operating conditions and surface requirements (for roadways/rail)

in the case of the forcing function.

Another application would be to incorporate an optimization routine and

use the method inversely to determine the optimum design under engineering con-
straints for a desired satisfaction level.

Lastly, the method can be applied to validation studies of models of comfort

and/or satisfaction by testing over a wide range of conditions with a limited

set of field data. This would be accomplished by inserting the appropriate

transfer function to replace those described above.

Conclusions

A method has been developed to predict passenger satisfaction with the ride

environment of a transportation vehicle. This method, a general approach, has

been applied to a conmmter-type aircraft for illustrative purposes. The effects

of terrain, altitude and seat location were examined. The method predicts the

variation in passengers satisfied for any set of flight conditions. Several

non-commuter aircraft were also analyzed for comparison and other uses of the

model described. The method proposed has advantages for design, evaluation, and

operating decisions.
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Figure I.- Schematic for determining passenger satisfaction
with ride quality.
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Figure 2.- Turbulence probability distribution.
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